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Motivation

Heterogeneous computing emerging as a way to
computing efficiency

parallel design and programming are the trends

Hard to get optimal performance on heterogeneous
architectures

Need for tools for understanding performance on
heterogeneous architectures

Different approaches: profilers, simulators, performance
models
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Why GPUs?

S. Madougou et al. A tool for Bottleneck analysis and Performance Prediction for GPU-accelerated Applications

For their popularity

Higher pure computing horse-power than CPUs
Performance enhancement for more and more applications

For the challenge of getting performance on GPUs

Fitness to data parallel and specific programing models
Exploration of a large optimization space (via tuning, etc)
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Modelling performance, why?

Scaling behavior through application parameter space
Scaling behavior through hardware parameter space
Performance bottlenecks
Performance limiting factors
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Performance modelling (PM)

Not the first, certainly not the last.

Many different approaches:

Simulation

Analytical

Statistical/ML

Measurements

Current approaches present many shortcomings1:

1
Madougou et al., An empirical evaluation of GPGPU performance models, Hetero-Par 2014.
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Main PM Obstacles

Complexity

Requirement for detailed hardware knowledge

Dependence on hardware or application

Requiring user intervention

Simulation/benchmarking is time consuming
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Machine Learning Trade-Offs

Pros:

Doesn’t require hardware understanding

Doesn’t require software understanding

Sparse set of measurements is sufficient

Easily publishable buzzword!

Cons:

Don’t know what is learned

Hard to know where bottlenecks are

Prone to overfitting
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Some Observations

All platforms expose hardware performance counters (PCs)

Performance data is easy to extract but hard to interpret
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PC Measurements and Metrics

PC: special-purpose register built into a processor to store
the count of an hardware event

PCs allow to establish correlation between application
code and its mapping to the hardware

Choice of tool for PC counting and derived metrics

Low level: PAPI, vendor-specific, high level: TAU,
HPCToolkit, Score-P, etc
LIKWID (CPU), nvprof (GPU) used currently
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Some PCs and Metrics for CPU (Intel Nehalem)

metric meaning group

inst per br instructions per branch BRANCH
br rate branch rate BRANCH

mem data vol volume of data read/write in GByte MEM
SPFlops single precision arithmetic performance FLOPS SP
SPMUOPS single precision vectorization performance FLOPS SP
PMUOPS vectorization performance FLOPS SP

L1 miss ratio L1 data cache miss ratio CACHE
dcache miss rate L1 data cache miss rate CACHE

L3 data vol data volume between L2 and L3 L3
L2S ratio loads to stores ratio DATA

L1DTLB miss rate L1 data TLB miss rate TLB
cpi cycles per instruction Always

br mispred rate branch misprediction rate BRANCH

S. Madougou et al. A tool for Bottleneck analysis and Performance Prediction for GPU-accelerated Applications



Motivation
A Statistical Approach: BlackForest

Implementation and Case Studies
Conclusion

Some PCs and Metrics for GPU (CUDA CC 2.0)
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counter meaning

shared replay overhead
average number of replays due to shared memory conflicts
for each instruction executed

shared load|store
number of executed shared load (store)
instructions, increments per warp on a multiprocessor

inst replay overhead average number of replays for each instruction executed

l1 global load hit
number of cache lines that hit in L1
for global memory load accesses

l1 global load miss
number of cache lines that miss in L1
for global memory load accesses

gld request
number of executed global load instructions
increments per warp on a multiprocessor

gst request similar to gld request for store instructions

global store transaction
number of global store transactions
increments per transaction which can be 32,64,96 or 128 bytes

gld requested throughput requested global memory load throughput

achieved occupancy
ratio of average active warps
per active cycle to the maximum number of warps per SM

l2 read throughput memory read throughput at L2 cache
l2 write transactions memory write transactions at L2 cache
ipc number of instructions executed per cycle
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Counter Behavior vs Performance - CPU2

2
J. Treibig et al., Best practices for HPM-assisted performance engineering on modern multicore processors,

CoRR, 2012
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pattern
signature

performance behavior HPM (group)

load imbalance saturating speedup
different counts of instructions retired or FP
operations among cores (FLOPS DP,FLOPS SP)

memory BW saturation
saturating speedup across memory BW comparable
cores sharing a memory interface to peak memory BW (MEM)

strided memory access
large discrepancy between between low BW utilization despite LD/ST
simple BW-based model and actual domination, low cache hit ratios, frequent
performance evicts/replacements (CACHE,DATA,MEM)

bad instruction mix

performance insensitive large ratio of inst. retired to FP inst. if FP,
to problem sizes fitting many cycles per inst. if long-latency arithmetic,
into different cache levels scalar instructions dominating in data-parallel

loops (FLOPS DP,FLOPS SP,CPI)

limited instruction throughput

large discrepancy between low CPI near theoretical limit if instruction
actual performance and simple throughput is the problem, static code analysis
predictions based on max FLOP/s predicting large pressure on single execution
or LD/ST throughput port (FLOPS DP,FLOPS SP,CPI)

synchronization overhead
speedup going down as more cores large non-FP instruction count
are added, no speedup with small (growing with number of cores used), low
problem sizes, core busy but low FP CPI (FLOPS DP,FLOPS SP,CPI)

false cache line sharing
very low speedup or slowdown frequent (remote) evicts (CACHE)
even with small core counts
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Counter Behavior vs Performance - GPU
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performance issue counter set values and trends message

scattered access pattern

gld request ,l1 global load miss memory instruction count � coalesce access
l1 global load hit,gst request memory transaction count addresses,
l1 global store transaction kernel throughput � non-caching
gld|gst transactions per request hardware throughput loads or textures

insufficient mem. concurrency
gld throughput,gst throughput effective � theory increase occupancy
achieved occupancy low many elements / thread

instruction serialization inst executed,inst issued executions � issues see next 2 items

shared bank conflicts
l1 shared bank conflict conflicts > loads+stores use padding
shared load,shared store

warp divergence
divergent branch,branch or divergent branches data or thread
branch efficiency ≈ branches index rearrangement

limited inst. throughput ipc low compared to theory use intrinsics
insufficient parallelism achieved occupancy low adjust exec. config.
synchronization overhead stall synch high code rearrangement

latency
gld|gst throughput,ipc both mem. and msgs for insuf. mem.

inst. throughput � theory and inst. throughput

register spilling
l1 local load miss,local load compare to total instructions increase register
local store,gld request compare to global memory limit per thread,
gst request,inst issued instructions increase L1
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BlackForest3 Architecture

performance 
model

measurements

tools

CPU
accelerator

analyses

regressions

similarity

correlation

data

perf. metrics

hw. params

prg. params

compilation

instrumentor

compiler

pr
og

ra
m

scheduler autotuner

visualization

3
S. Madougou et al., A Tool for Bottleneck Analysis and Performance Prediction for GPU-accelerated

applications, AsHES, 2016
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BlackForest (BF) Approach

Goal: explain performance behavior and predict performance

Main approach: regression by random forest4

black-box approach

predictive power and high accuracy of the predictions

variable importance feature

Model simplification: model important variables in terms of
problem/hardware parameters: (g)lm, MARS

Additional techniques for model improvement and ease of
interpretation: PCA, clustering

4
L. Breiman, Random forests, Machine Learning , 2001
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Random Forest Model Construction

Steps:

1 Select random sample from training set (Bagging)

2 Select random sample from PCs

3 Construct regression tree to fit data

4 Repeat to build forest of trees

5 Average predictions of all trees together

Remarks:

Randomness reduces overfitting

Identifies important performance counters!
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BlackForest Measurements
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performance 
model

measurements

LIKWID
nvprof

i7 920
GTX480,K20m

analyses

RF, MARS, 
lm

clustering

PCA

data

perf. metrics

hw. params

prg. params

compilation

LIKWID

gcc,nvcc

scheduler autotuner

R viz. tools

pr
og

ra
m

HS hotspot, structured grid thermal simulation tool for estimating processor
temperature, memory intensive, latency limited

NW Needleman-Wunsch, nonlinear global optimization method for DNA
sequence alignment, memory intensive, bandwidth limited

MM Matrix Multiply, linear algebra primitive used in many numerical
algorithms, memory intensive, bandwidth limited
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Experimental Setup

Experimental data collection: several application runs
with different problem sizes

Response and predictors specification, model building and
training

Sampling UAR of 20% data for test

Use variable importance to simplify the model if possible

Otherwise, PCA and/or clustering to try to simplify

Control goodness-of-fit by R-squared (>95%)
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HS Problem Scaling on CPU
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MM Problem Scaling on GPU
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NW Hardware Scaling on GPUs (1/2)
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NW Hardware Scaling on GPUs (2/2)
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Conclusion & Outlook

Results:
BF is a step towards an easy-to-use and insightful PM
framework
Accuracy, quasi automation, application and architecture
agnostic

Future directions:
Automation
Improve accuracy for irregular applications
Build higher level metrics on top of PC
Address counter hardware specificity to improve
portability (PAPI?)
Implement correlation between counter behavior vs
performance issue
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Questions?

Questions?

Source: https://bitbucket.org/smadougou/rfpm

(Warning: Pre-alpha software)

Email:{s.madougou,a.l.varbanescu}@uva.nl
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Simplification validation using VI
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Bottleneck analysis using VI
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Predictor-Response Association (1/2)
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Predictor-Response Association (2/2)
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Redundant predictors removal using PCA
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MM hardware scaling on GPUs
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